Study of multi-nucleon transfer reactions with light nuclei

G. Benzoni1, D. Montanari1, A. Bracco1, N. Blasi1, F. Camera1, F.C.L. Crespi1, A. Corsi1, S. Leoni1, B. Million1, R. Nicolini1, O. Wieland1, A. Zalite1, F. Zocca1, F. Azai2, S. Franchoo2, L. Corradi3, G. De Angelis3, A. Gadea3, A.M. Stefanini3, J.J. Valiente-Dobón3, E. Farnea4, S. Lunardi4, P. Mason4, G. Montagnoli4, F. Scarlassara4, S. Szilner5, G. Pollarolo6, S. Battacharyya7, G. De France7, A. Navin7, M. Rejmund7...........

1 Università degli Studi di Milano and INFN sezione di Milano, Milano, Italy.
2 IPN Orsay, France.
3 INFN Laboratori Nazionali di Legnaro, Legnaro, Italy.
4 Università di Padova and INFN sezione di Padova, Padova, Italy.
5 RBI, Zagreb, Croatia.
6 Università di Torino, Torino, Italy
7 Ganil, Caen (Fr).

Multi-nucleon transfer (MNT) and deep-inelastic (DIC) reactions are useful tools to populate exotic nuclei, particularly the neutron-rich ones. Although these reaction mechanisms have already been extensively exploited in the past years, only recently the availability of efficient spectrometers opens up a variety of new possibilities to study the reaction mechanism itself and to investigate the spectroscopy of medium neutron-rich nuclei.

In this view, two different experiments were performed employing a stable (22Ne) and a radioactive (24Ne) beam. The first reaction has been performed using the CLARA-PRISMA-DANTE set-up [1, 2, 3] at Legnaro National Laboratories (Legnaro-Italy), where an intense beam (3-4 pnA) of 22Ne at 151 MeV impinged on an enriched 700 µg/cm² 208Pb target [4].

The second reaction, performed at Ganil (Caen-France) employed a SPIRAL radioactive beam of 24Ne (at 190 MeV with an intensity of 1.5 × 10⁵ pps) also impinging on a thick 208Pb target [5]. Recoils and coincident γ rays were detected with the VAMOS-EXOGAM set-up [6].

The data show that MNT reactions can selectively populate states of different nature and, therefore, are a good tool to study nuclear structure further away from stability.

Recent results and a comparison of the two experiments will be discussed.

References